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ABSTRACT

Modern scientific enterprises are inherently knowledge-intensive.
In general, scientific studies in domains such as geosciences,
climate, and biology require the acquisition and manipulation of
large amounts of experimental and field data in order to create
inputs for large-scale computational simulations. The results of
these simulations must then be analyzed, leading to refinements of
inputs and models and additional simulations. Further, these
results must be managed and archived to provide justifications for
regulatory decisions and publications that are based on these
models. In this paper we introduce our Velo framework that is
designed as a reusable, domain independent knowledge
management infrastructure for modeling and simulation. Velo
leverages, integrates, and extends open source collaborative and
content management technologies to create a scalable and flexible
core platform that can be tailored to specific scientific domains.
We describe the architecture of Velo for managing and
associating the various types of data that are used and created in
modeling and simulation projects, as well as the framework for
integrating domain-specific tools. To demonstrate a realization of
Velo, we describe the Geologic Sequestration Software Suite
(GS®) that has been developed to support geologic sequestration
modeling. This provides a concrete example of the inherent
extensibility and utility of our approach.
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1. INTRODUCTION

Simulation, along with theoretical and empirical studies, is firmly
entrenched in many areas of science [1]. As the scale of
computational models and simulations grow to address ever more
complex challenges [2], it is becoming increasingly difficult to
create simulation inputs and manage and analyze the results [3].
Several distinct scientific disciplines such as climate [4] and
geosciences [5] have made significant investments in creating
successful comprehensive data management and analysis systems.
These however, have limited applicability to other scientific
domains, or do not support the full modeling and simulation
lifecycle.

content management, scientific

Much effort has been targeted at creating various generic
technologies to support modeling and simulation across many
science domains. For example, a number of approaches to support
data provenance [6], workflows [7] and scalable distributed data
management exist [8]. Many of the resulting technologies are
deployed to provide point solutions for various user communities.
Still, we are unaware of successful efforts to build a broadly
applicable platform that can be easily tailored and used by
different modeling and simulation domains.

In this paper we describe our work to design and build a flexible
foundational technology known as Velo that can be used in
modeling and simulation projects to:

e Capture, organize, query, and share experimental and
observational data along with the tacit knowledge that is used
to develop computational models

e  Provide versioning of model inputs for specific projects and
association of outputs with specific input data set versions

e  Enable simulations to be launched on remote computational
platforms (including HPC)

e Support both tight and loose integration of 3™ party tools to
facilitate various modeling activities such as model
development and visualization



e Provide a collaborative user interface that can be easily
tailored by users to meet the needs of specific scientific
domains

We refer to Velo as a knowledge management platform [9] for
modeling and simulation. A knowledge management system
(KMS) is an information and communication technology system
developed to support and enhance explicit and tacit organizational
knowledge [10]. For leading-edge organizations, KMSs are
becoming a key factor in their success [11], thus contributing to
wider deployment over a broad range of domains [12].

The Velo knowledge management platform is designed around a
novel integration of a collaborative Web-based environment and a
scalable enterprise content management system. In this paper we
describe the Velo architecture and its realization, and show how
the user environment can be customized for use in modeling and
simulation studies that support geologic sequestration of
greenhouse gases.

2. RELATED WORK

Contemporary Laboratory Information Management Systems
(LIMS) such as [23][24][25] share some common aims and traits
with Velo. LIMS must manage large data sets sourced from
experimental facilities, and make the resulting data sets accessible
to their user communities. However, LIMS typically provide little
support for modeling and simulation activities that leverage the
data sets they manage, and focus on automating well-defined
workflows for processing experimental data. In contrast, Velo is
defined to support the more ad hoc, incremental and iterative user-
driven activities that are common in modeling and simulation
projects.

Several data management systems for scientific data exist, for
example, the Storage Request Broker (SRB) [26]. The SRB
supports controlled sharing, publication, replication, transfer,
attribute based organization, discovery, and preservation of
distributed data. These technologies are complementary in that
they can be used to provide the large-scale distributed data
management capabilities that Velo requires. The files that are
stored can then be transparently linked to and accessed through
the Velo user environment.

At PNNL we have considerable experience in building first-of-a-
kind scientific user environments for computational chemistry
[13] and bioinformatics [15]. These widely used technologies are
targeted specifically at the respective domain scientists, and
exploit a variety of off-the-shelf (e.g. Postgres, J2EE, WebDAV)
and custom built components. We also have experience with
leveraging semantic technologies for knowledge management in
science with the Scientific Annotation Middleware technology
[14]. Our efforts in Velo differ from these in that we are
attempting to build a more generic scientific knowledge
management architecture that can be easily tailored to specific
scientific domains.

Standard semantic wiki-based environments are useful for
describing or documenting models and experiments [18] [19] but
do not integrate with tools that assist with model execution or
comparison. Model execution and comparison tools typically
operate at a low level and do not facilitate collaboration and
knowledge sharing. Velo aims to couple the advantages of
semantic wiki-based environment and modeling tools by
integrating them into a collaborative framework.
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Other efforts are using wiki technologies as the core architecture
for building new knowledge management services. For example,
[16] describes three prototypes for enhancing a wiki’s textual
content with a complementary visual representation of the
knowledge, and [17] uses wikis as the basis for passive
visualization of social networks graphs.

Several knowledge base architectures have been proposed, for
example [20][21], and a classification of these is given in [22].
Our approach shares some concepts and technologies with
existing systems, but is differentiated by its attempt to leverage
off-the-shelf software whenever possible. This provides a more
timely, agile and robust solution.

3. Velo ARCHITECTURE

A large range of functional requirements have driven the design of
Velo. These were derived from working with scientists in
different modeling and simulation domains, for example carbon
sequestration [29], and generalizing the findings to capture the
common needs. From these discussions, some of the key drivers
for the Velo architecture that emerged were as follows:

e  Support distributed, collaborative teams of modelers working
on common problems

e  Support integration of external, off-the-shelf tools

e Capture field and experimental data associated with a
modeling project

e  Manage the evolution of models and their associated results
over time

e  Exploit mature open source technologies to ensure a robust,
scalable platform

An overview of the resulting Velo architecture is depictured in
Figure 1. The design provides a clean separation of concerns
between managing the user environment and its associated data,
and storing and managing the content associated with models and
simulations. This loose coupling ensures that the user
environment and content management systems can evolve
independently to exploit advances in their underlying
technologies. It also allows customization of the user environment
for specific modeling and simulation disciplines without
impacting the underlying management of the associated modeling
data.

This core architecture provides other generic capabilities for
incorporating third party tools into the user environment, and
ingesting external data into Velo. These mechanisms are
extensible so that discipline-specific tools and data can be
seamlessly integrated and packaged for scientists to use.

The following sections explain in detail the design and
implementation of Velo.

3.1 Velo Core

The Velo collaborative user environment is built upon
MediaWiki'. MediaWiki is a widely deployed Web-based
technology, with a stable open source codebase, extensible
architecture, and a wealth of available extensions that, for
example, provide enhanced role-based security. It provides a PHP

! http://www.mediawiki.org/wiki/MediaWiki



scripting language based environment for customization, and
stores wiki contents in a relational database (MySQL).
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Figure 1. Building blocks of Velo architecture

MediaWiki provides a multi user environment for content
generation, file and image upload, basic authentication, and
version control of changes to pages. In Velo, we exploit these
features to support the inherently iterative and exploratory nature
of scientific modeling. Velo presents a web site structure based
upon projects, models and data that can be customized to suit
specific science domains. Using this structure, modelers can save
metadata about projects and evolving model versions as wiki
pages. This serves as documentation of the tacit knowledge for the
modeling process, which can be shared with collaborators and/or
used to generate reports for decision makers, regulatory bodies,
and audits. Velo’s page structure and user interface design is
detailed in section 3.2.

Velo provides advanced search capabilities by exploiting the
MediaWiki extension, Semantic MediaWiki (SMW)?. SMW
enables the creation of arbitrary semantic tags that can be
associated with content in any page, and supports querying the
contents based on the tags created. It also provides interfaces to
browse all semantic tags in a page and all pages with a specific
tag. A query language similar to SQL can be used to retrieve
pages with specific semantic tags, or a combination of search
criteria. SMW’s query capabilities are highly flexible, requiring
no predefined schema. This enables users and tools to introduce
new semantic tags as needed and build queries that retrieve tagged
content.

While MediaWiki provides highly scalable management of the
wiki page content using MySQL, all external content (e.g. linked
files, images) is simply stored in the server’s file system without
any inherent organization. This makes it difficult to manage the
large, structured collections of data that are generated during
modeling projects.

Velo overcomes this by integrating MediaWiki with an open
source content management system (CMS). The initial
implementation is based on Apache Subversion (SVN)?, a version

2 http://semantic-mediawiki.org/wiki/Semantic_MediaWiki

3 http://subversion.apache.org/
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control system that is robust and provides APIs for extension.
Velo provides an integration infrastructure that synchronizes data
file operations between MediaWiki and SVN. The implementation
extends the MediaWiki database to save path information of SVN
files, and utilizes MediaWiki and SVN provided programmatic
hooks to achieve synchronization.

As an example, users can upload multiple versions of a file/folder
into the SVN repository either through the Velo interface or using
the SVN command line utilities. For every page uploaded or
checked-in to SVN, an SVN post-commit hook makes a
corresponding entry into the wiki database and creates a template
or metadata page in the wiki. These pages are generated within a
special namespace, WFS (wiki file system), and with the same
name as the file’s directory path. These pages contain summary
information about the file/folder and provide a link to
view/download the file. Velo provides interfaces for all basic file
operations like upload, download, delete, rename, and move from
all pages in the WFS namespace.

3.2 User Environment

The user interface (UI) design of Velo takes significant advantage
of MediaWiki’s skinning capabilities. This allows Velo to be
presented using nearly any combination of interface design and
development techniques. Thanks to the abstraction between the
various application layers, the tailored UI allows for a custom
look and layout without changing the underlying features and
functionality of the environment.

WFSlusers/
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Figure 2. Basic Velo Skin

The Velo Ul may be divided into four primary regions or areas as
shown in Figure 2:

1. Tool Navigation — Velo integrates with various tools useful
for the modeling process. These can be MediaWiki/SMW
extensions or loosely coupled domain specific tools (see
Section 3.4). Each tool available within and from Velo is
dynamically included in this dropdown menu. When
invoked, the tool will allow the user to select a data source,
and then display the results in the content area.

2. File Browser — This gives asynchronous access to files in the
underlying CMS. This area is resizable, giving the user
control over how much space it takes up in their workspace.
It also includes a scratchpad [28], or virtual collection space,
allowing the user to collect multiple files from different
directories as input for tools.



3. Wiki Functions — Access to standard wiki page
functionalities such as annotation, revision history,
discussion, and edit are presented inline with the content on
each page.

4. Content Viewer — Project-, data- and image-based content
are displayed in the largest region of the window by default,
maximizing space to view tool results, analyze data, edit
content, and collaborate.

This UI design leverages and extends the standard wiki look and
feel, to give users a familiar workspace and experience. It is also
easily modifiable and can be redesigned to provide multiple skins
and customized views of the underlying Velo content.

3.3 Semantic Capabilities/Metadata

Extraction
Metadata for file content in Velo is of two types, namely:

1. Generic information such as file size, owner, last modified
timestamp and preview/thumbnails

2. Information specific to the file contents, such as keywords,
geographic location, and included data types

By providing a metadata page for every file in the backend CMS,
Velo provides a clean placeholder to present both types of
metadata. This can help the user to quickly browse or query for
information without having to open or download large numbers of
potentially huge files.

When a user uploads a file, Velo stores it in the CMS and
automatically extracts generic metadata information. It also
provides an extensible framework for creating and invoking
custom metadata extractors for different file types. Custom
metadata extractors are subclasses of the Velo Extractor class, and
they must register their associated file mimetype in a
configuration file. Each time a file is uploaded, Velo
automatically detects the mimetype of the file, invokes the
appropriate metadata extractor, and creates a wiki metadata page
with the contents returned from the extractor. Metadata pages
conveniently enable the user to browse and query uploaded
information without having to open and search through actual file
content. Velo provides metadata extractors for common file types
such as images and PDF, and we are currently developing
extractors for Microsoft Office documents.

Figure 3 shows the result of Velo’s PDF extractor. The wiki page
contains a link to the actual file in the CMS and text extracted
from the first page of the PDF file. A summary box is also
generated that presents the occurrence of keywords in the
doument. The keywords that the PDF extractor searches for are
defined in a user extensible semantic dictionary, and the extractor
also adds SMW format tags for the matching keywords to enable
semantic searches on the document. The following shows a few
example keywords based on a semantic dictionary for geological
sequestration:

<category name="Rock Name">
<key>Granite</key>
<key>Granodiorite</key>
<key>Rhyolite</key>
<key>Sandstone</key>
<key>Shale</key>
<key>Siltstone</key>
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<key>Quartz</key>
<key>Arkose</key>
</category>

This XML snippet defines eight keywords under the category
Rock Name. Based on these definitions, the PDF extractor parses
the uploaded file and finds, for example, the keyword Sandstone
17 times. It then creates a semantic property Rock Name with the
value Sandstone; 17 in the metadata page. that is generated for
this document. Similar semantic tags are created for each matched
keyword, and finally a template page is used to display the top
matches in a summary table on the metadata page.
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Figure 3. Metadata extracted from uploaded PDF

A metadata page for uploaded documents has several advantages:

1. Users see a summary of the contents of a file, allowing them
to quickly identify useful information contained in the
extracted text and a summary of keywords that are present in
the file.

2. Users can add custom semantic annotations/tags, e.g. tacit
knowledge related to the document, by simply editing the
page and adding content of the format [[Property::Value]] or
using the Annotate functionality of the SMWHalo extension®.

3. Users can take advantage of SMW query features to search
documents based on a combination of conditions. For
example, a scientist working on geologic sequestration and
looking for reference data can query for all documents with
rock property Permeability mentioned more than ten times
and with a geologic formation name of Mt. Simon.

4. By adding semantic markup to the metadata, Velo can take
advantage of SMW extensions to present multiple views of
the data. For example, data can be presented as points on a
Timeline bar, as locations on a Google map, or as a
thumbnail gallery.

For binary file types where no metadata can be extracted as well
as for pages associated with special folders rather than uploaded
files, users can create template pages with default contents and
register that for the specific mimetype. In such cases, Velo creates
a default metadata page with the contents of the template page.
This default content serves as a starting point for user
customization. For example, a default user’s page could contain

4 http://semanticweb.org/wiki/Halo_Extension



section headings ‘My Favorites’, ‘My Projects’, and a semantic
query to generate a summary table of data in Velo. Users could
edit the page to customize contents under individual section
headings, customize the semantic query condition, or delete
everything and insert custom content.

3.4 Tool Integration

Velo integrates a collection of tools with MediaWiki to provide a
rich user environment for modeling and simulation. Some tools
are closely integrated with the MediaWiki architecture and are
implemented as MediaWiki extensions or hooks. Others are more
loosely integrated where Velo only knows about the input and
output format of the tool, and simply provides an interface to
invoke the tool, treating the tool itself as a black box. Velo also
provides loose integration with standalone tools that cannot be
invoked from its infrastructure. We describe some examples of
each tool type in the following subsections.

3.4.1 MW Integrated Tools

Velo leverages various open source plug-ins for MediaWiki by
including them in its core architecture. We have also
extended/modified some of them to work with the underlying
CMS file structure. In particular, Velo integrates with:

1. SMW, an environment that provides rich query and
visualization functionalities.

2. Semantic Map and Map extensions, used for querying and
displaying data with geographic coordinates on Google
maps.

3. Semantic Gallery and ImageLink extensions to display
images in a gallery format. These are useful as scientific
modeling and simulation generates large amounts of data in
the form of images and plots.

In Velo, we have extended the SMW query engine to work with
Velo’s modified MediaWiki database to better support metadata
pages in the WFS namespace. Since these pages represent the
underlying hierarchical file system, we defined a new semantic
query attribute, scope, to support file structure based queries. For
any semantic query, Velo users can set an additional scope
parameter with a value of local, recursive or global to restrict the
search to files within the current (local) folder, current folder and
all sub folders, or the entire SVN repository respectively.

Velo uses the HaloACL extension’ to provide basic page level
access control. We extended HaloACL to support inheritance of
access control list (ACL) from the parent folder to child folders.

3.4.2 Black Box Integration

Velo supports loosely integrated tools, where the tool is not a part
of MediaWiki source code or an extension. In such circumstances,
Velo handles the input and output of the tool and invokes the tool
using its interface.

Velo provides a framework for scientists to easily integrate their
custom tools and invoke them from within Velo's wiki interface.
A user with administrative privileges can create a MediaWiki
Special Page® that can accept the user inputs for the tool, invoke
the tool and redirect to the result page. Such tools are registered in

http://www.mediawiki.org/wiki/Extension:Halo_Access_Contro
1 List

8 http://www.mediawiki.org/wiki/Manual:Special_pages
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a configuration file. Velo uses this configuration file to determine
the point of integration in the wiki interface and the inputs
required by the tool.

We are currently working on extending this framework so that the
user can describe the tools’ input/output specification, and the
point of invocation from the Velo interface in an XML format.
Velo would then use this to automatically create user input forms,
validate inputs, invoke the tool, and redirect the output.

The following sections describe examples of loosely integrated or
black box tools.

3.4.2.1 Job Launcher

One of the common needs across multiple scientific modeling
domains is executing parallel numerical model simulations on
remote high performance computing resources. Velo has
implemented a job submission tool that creates a batch queue job
control file for a variety of schedulers, submits the job, handles
remote communication, and monitors the job's progress. Once a
job completes, the specified result files are uploaded
automatically into the Velo CMS. The job launcher is developed
as a Java Web Start application that can be invoked from the
Tools menu. Figure 4 shows the Velo Job Launcher interface.

|penrose
chinook_nobatch
localhost
[irankiin

chinook

Name franklin Machine Name franklin.nersc. gov

Allocation Account

wWall Time Limit days hours minutes

Processors [4..38288] Nodes [1..9572) Parallel

User Hame

Run Directory

Scrateh Directory

Executable Path

Add File Disposition Leave on Server |«

Remove Preserve Remote Directory

Submit Close

Figure 4. Velo Job Launcher interface

3.4.2.2 Grid Viewer

The Grid Viewer is a visualization tool for data associated with a
mesh and stored in a common gridded data format. The tool
supports three suites of functions to facilitate visualization of a
computational grid and associated attributes. The Grid Control
functions provide options such as toggling on and off axes,
bounding boxes and dual views; the Slice Control functions
permit visualization of the interior of the volume; the Cell-Render
Control functions control the visualization of attributes assigned
to the individual cells and allows cutaway views using slider
planes to visualize the interior domain. Figure 5 shows some of
the visualization capabilities of the Grid Viewer.

3.4.3 External Tools

Scientists use many standalone software tools that are domain
specific, proprietary and cannot be easily integrated with external
software. The latter could be for reasons such as license
restrictions, limited supported platforms, availability of APIs, and
non-proprietary file formats. However, many of these are complex
feature rich tools, which are critical to the scientists’ everyday
work. For such tools, Velo provides data integration through a
check-out/check-in mechanism with the CMS. The user checks
out the inputs required for the tool, uses the tool outside of the
Velo framework, and then checks the output back into Velo. Velo
in this case serves as a documentation tool and provenance tracker
for this data. This provides users with the flexibility of using their
existing tools, yet preserving the link between those
data/processes performed within the Velo framework and those



performed outside the framework. Velo records basic information
such as file owners and check-out/check-in timestamps but
depends entirely on the users’ documentation of the external
processes to provide useful provenance information.

""“-__/-".4

Figure 5. Visualizations supported by the Grid Viewer tool
4. Velo REALIZATION

Our initial deployment of Velo, the Geological Sequestration
Software Suite (GS®, supports scientists working on geologic
sequestration modeling projects. Geologic sequestration is a
technology currently being developed to mitigate global warming
through the long-term storage of greenhouse gases. For example,
CO, emitted as a by-product of energy production can be captured
and injected into subsurface reservoirs for permanent storage,
thereby reducing emissions to the atmosphere.

Finding suitable subsurface (underground) sites for sequestration
of greenhouse gases requires performing extensive studies that
include modeling the site geology and the physical and chemical
processes that determine the fate and transport of injected gases.
Subsurface modeling is an iterative process that can often take
months or even years to complete, and is continually revisited as
new information is gathered. In addition, the work is performed
not by a single scientist, but by interdisciplinary teams comprised
of geologists, hydrologists, engineers, geochemists, and
computational scientists who are unlikely to be co-located. As
well as technical staff, there are project managers and others who
may be reviewing or overseeing the work.

GS® is being used to aid in the organization and sharing of data
and by facilitating collaboration within the teams of scientists
charged with developing these complex models. The following
subsections describe some of the key customizations and
extensions to Velo developed for GS®. It showcases how the
framework makes it easy to customize and integrate with domain
specific data and tools.

4.1 GS® UI Design and Custom Templates

For GS®, a custom skin was developed using MediaWiki’s
skinning environment. This skin was created to give the GS®
version of Velo a custom look and feel that clearly sets it apart
from other Velo instances.

GS® organizes data in the CMS under top-level folders or
directories named users, sites, projects and reference. The users
directory serves as a scientist’s personal development area. sites
holds a collection of site-specific folders, each containing public
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(available to all users of GS®) data. projects holds a collection of
project directories that contain data related to a specific
project/problem a single team is working on. The reference
directory holds data that is not tied to any specific geologic site or
project, but rather used as a general reference information.

GS® defines a semantic dictionary with various domain specific
categories and keywords in the XML format specified in Section
3.3. It uses the PDF extractor to extract the first page of the
document and produce a summary of keywords found in the entire
document. This is extremely useful to the modelers as they often
rely on reference documents in PDF format for certain data that
are needed to develop a model but have not been collected at a
particular study site. The metadata pages and advanced semantic
query features greatly reduce their search set. As more users
contribute reference documents to GS® and add semantic
annotations to existing documents, the community benefits from
the collective knowledge.

GS® uses Velo’s mimetype specific metadata generation
functionality to handle special directories/collections such as
projects, models and simulations. These collections each have a
specific meaning and thus interpretation when compared to
normal file system directories/collections. GS® registers a new
mimetype and a template page for each of these folder types.
When a user creates one of these special folder types, GS® looks at
the registered list of mimetypes and creates a metadata page using
the corresponding template page. Figure 6 shows the metadata
page that gets automatically generated for a new project folder. As
projects are typically associated with a particular geographic
location, the template page provides a summary table to show the
project location along with a map. The user can input the location
using a simple HTML form by clicking on the ‘Edit with Form’
link at the top. The HTML form is generated using the Semantic
Forms extension.
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Figure 6. Default page created for any new GS® project
4.2 GS’ Tools

The following are examples of tools created using the Velo tool
integration framework for GS>.

4.2.1 Well Log Metadata Extractor

The first step in the process of modeling the injection of CO, into
the subsurface is to develop a conceptual understanding (or
model) of the subsurface reservoir. An important type of data
often used in this model development is geophysical wireline well
log data. As a geophysical tool is lowered in the borehole, it
records a variety of properties of the rocks and fluids to an



electronic data format creating a well log, typically in the industry
standard Log ASCII Standard (LAS) file format. GS® uses the
functionality described in Section 3.3 to register ‘las’ as a
mimetype and provide a custom metadata extractor. When a .las
file is uploaded, the system determines its mimetype and invokes
its extractor. This extractor parses the file’s header information to
identify all of the recorded properties, the well's geographic
location, and other useful metadata such as the log start depth and
stop depth. The extractor also looks for a pre-configured list of
properties and if found, creates a plot for each of these properties.
These plots serve as a quick preview of the well data that is in the
form of columns of numbers in the LAS file. Figure 7 shows a
sample generated LAS metadata page with the plotted properties.
It also shows all of the properties in the data file with an option to
select and plot multiple properties for side-by-side comparison.
The location of the well is also displayed on a Google map, along
with a summary of data read from the header and a link to the
actual file in the CMS.

Figure 7. Metadata page generated for a LAS file

4.2.2 Well Log Browsing Tools

GS® provides some additional tools to support viewing data in
multiple LAS files after upload and metadata extraction. One such
tool is the Graph LAS Properties. This allows users to compare
multiple well log files with respect to a single recorded property.
The user can browse and select multiple LAS files from different
directories, select a property common to all selected files, and
create a plot of that property for all selected files side by side.

The LASGallery tool generates an image gallery of all the LAS
files present in a given collection. This gallery uses the same plot
presented in the LAS metadata pages. The LASMap tool uses the
geographic coordinates extracted by the metadata extractor to
create a Google map displaying the well locations. Both of these
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tools can use the scope attribute described in Section 3.4.1 to
restrict the query results.

4.2.3 Data Extraction Tools

LAS files have data about various geologic properties recorded at
different depths below the earth’s surface. For a given problem,
users are often interested in specific geologic properties at a
specific depth range. GS® extends the SMW query functionality to
create a new result format named ‘las’. This result format accepts
a depth range and the list of properties as additional inputs to a
generic SMW query. SMW finds a list of LAS metadata pages
based on given SMW query conditions. The GS® las format
extension takes the resultant list as input; parses individual file
contents, and extracts data corresponding to the specified
properties and depth range. The extracted data is saved as another
LAS file so that it can easily be downloaded and used as input for
further processing.

4.2.4 Model Development and Documentation
Support Tools

GS” also integrates with more loosely coupled “black box” tools
as described in section 3.4.2. For example Describe Conceptual
Model standardizes how conceptual model attributes for geologic
sequestration are documented. This standardization facilitates
comparison between models, structured queries, and summary
overviews for managers and other stakeholders. Most importantly
it serves as input for developing numerical models leading
directly to simulation input files via additional GS® tools.

Describe Conceptual Model is implemented as a set of GUI
worksheets that progressively collect more detailed information
on the conceptual model in categories including General Site
Description, Infrastructure and Operations, Geologic Framework,
and Processes and Properties. The worksheets are invoked from
the wiki via Java Web Start and are developed using an XML
form layout specification in combination with the Jython scripting
language. Jython is the Python scripting language implemented in
Java yielding all the expected platform independence and Web
interoperability of Java, but through a higher level of scripting
language. Jython GUI components are implemented using a
Python binding to Java Swing and AWT libraries allowing for
robust and dynamic GUISs.

The Jython/XML form layout capability was designed as a
flexible end-user extension capability to create Ul based tools
within Velo. The XML specification is tailored for collecting
numeric input typical of scientific applications as well as for
dynamically creating new fields, tabbed panes, and windows. Any
behavior specific to the UI, such as enabling/disabling fields
based on user settings for other fields, is easily implemented with
Jython scripting. These are capabilities that are not easily
supported using traditional Web-based forms. Figure 8 shows the
General Site Description worksheet for Describe Conceptual
Model.

When the data fields are completed, the current values are written
to an XML save state file that is uploaded to the wiki via the
CMS. Additionally, files that are referenced in field values are
also themselves uploaded to the wiki. These are used for
specifying auxiliary files that might include LAS well logs, GIS
files, and others needed in the process of developing models, and
ultimately simulation input files. A metadata page is generated
from the XML save state file that provides both a formatted
summary of the conceptual model and the semantic tags needed to
perform queries. Finally, the XML save state file is used to



restore worksheet GUI fields when it is next invoked from the
wiki allowing users to refine the model description throughout the
development process.
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Figure 8. General Site Description Conceptual Model
‘Worksheet

Another tool is Estimate Plume Radius, a standalone script that
estimates the radius of the CO, plume given a specific set of
inputs such as the mass of CO, injected, the depth of the injection,
the temperature and the porosity of the formation. The result is a
circle plotted on a Google map interface based on the location of
the injection well and the estimated radius of the plume. Figure 9
shows a sample plume radius calculation.

Figure 9. Plume Radius Estimator Tool

5. EVALUATION AND FURTHER WORK

The Velo framework is deployed in several instances of GS® that
are supporting various user communities involved in the modeling
of geologic sequestration sites. Velo is also a core framework
component for the ASCEM (Advanced Simulation Capabilities
for Environmental Modeling) User Platform, which is under
active development. The framework is also being evaluated in
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prototypes for the CCSI (Carbon Capture and Simulation
Initiative) Knowledge Management System, and the NEAMS
(Nuclear Energy Advanced Modeling and Simulation) Data
Management System.

The basic modeling and simulation lifecycle is common to all of
these projects. The specific data types, tools, model inputs and
simulation outputs vary, as do the high performance computing-
based simulators. Based on our experience so far, we are able to
accommodate a wide range of data types and integrate several
different tools with Velo. This provides evidence of the flexibility
and applicability of our architecture and confidence in its
usefulness.

Our growing experience in working with scientists in different
modeling and simulation domains has been highly effective in
highlighting areas for extension and improvements for Velo.
Some of the key features we are working on for our next release
are as follows:

Provenance: An important element of quality assurance and
assessment of simulation results is being able to understand the
data and assumptions upon which the results are based. Velo’s
wiki page organization supports this to some extent, allowing
navigation to view the inputs and outputs related to a simulation.
However, we are investigating more rigorous, provenance [27]
representation and navigation mechanisms that can provide much
more extensive and powerful quality assurance processes.

Natural Language Processing: The current implementation of
the Velo PDF Extractor only performs regular expression
keyword matching on uploaded PDFs. A major enhancement
would be to apply natural language processing to associate
categories and properties that are matched with their associated
quantitative (numbers) and qualitative (descriptions) values. This
would facilitate a much more robust query capability to return
useful results without users having to always refer to the
underlying documents to discover the context for keyword
matches.

6. CONCLUSIONS

As simulation and modeling projects increase in complexity,
introducing rigorous knowledge management platforms is
becoming a necessity. Our work in the Velo project is proving to
be of utility to several scientific domains, and hence holds great
promise in becoming the core of a next generation of flexible,
scalable scientific knowledge management technologies.

We believe one of the major competitive advantages of Velo is its
exploitation of robust, widely deployed open source technologies.
This enables us to concentrate our efforts on integrating tools and
data types relevant to scientists, and not invest on generic
infrastructure level technologies. This approach is enabling us to
build and deploy Velo environments for different domains at a
much lower cost, while simultaneously creating an extensible
collaborative platform for scientific knowledge management.
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